[Detection and Estimation] Estimation summary

Author

고경수

Published

September 25, 2024

Detection and Estimation (Estimation part)

GIST 황의석 교수님 [EC7204-01] Detection and Estimation 강의 정리 내용입니다.


  • An estimator \(\hat{\theta}\) is called unbiased, if \(E(\hat{\theta}) = \theta\) for all possible \(\theta\).

    \(\hat{\theta} = g(x) \Rightarrow E(\hat{\theta}) = \int g(x)p(x;\theta)dx = \theta\)

  • If \(E(\hat{\theta} \neq \theta)\), the bias is \(b(\theta) = E(\hat{\theta}) - \theta\)

    (Expectation is taken with respect to \(x\) or \(p(x;\theta)\))

  • Unbiased estimator is not necessarily a good estimator;

    but a biased estimator is a poor estimator.

  • MSE Criterion

    \(\text{mse}(\hat{\theta}) = E\left[(\hat{\theta} - \theta)^2\right]\)

    \(\quad\quad\quad = E\left[\left((\hat{\theta} - E(\hat{\theta})) + (E(\hat{\theta}) - \theta)\right)^2\right]\)

    \(\quad\quad\quad = \text{var}(\hat{\theta}) + \left[E(\hat{\theta}) - \theta\right]^2\)

    \(\quad\quad\quad = \text{var}(\hat{\theta}) + b^2(\theta)\)

Minimum Variance Unbiased(MVU) Estimator

  • Any criterion that depends on the bias is likely to be unrealizable → Practically minimum MSE estimator needs to be abandoned Minimum variance unbiased(MVU) estimator

    • Alternatively, constrain the bias to be zero

    • Find the estimator which minimizes the variance (minimizing the MSE as well for unbiased case)

    \(\text{mse}(\hat{\theta}) = \text{var}(\hat{\theta}) + b^2(\theta)\)

    \(\quad\quad\quad= \text{var}(\hat{\theta})\) (MVUE에서는 bias가 없음)

    → Minimum variance unbiased (MVU) estimator


Lec 3. Cramer-Rao Lower Bound (CRLB)

Cramer-Rao Lower Bound (CRLB)

  • The CRLB give a lower bound on the variance of any unbiased estimator. (biased의 경우는 알 수 없다!)

  • Does not guarantee bound can be obtained.

  • 만약 unbiased estimator의 variance가 CRLB라면 그 estimator는 MVUE.

  • likelihood function이 다음과 같다고 하면,

    \[p(x[0];A) = \frac{1}{\sqrt{2\pi\sigma^2}}\text{exp}[-\frac{1}{2\sigma^2}(x[0]-A)^2]\]

    log-likelihood function은 다음과 같고

    \[\text{ln}\ p(x[0];A) = -\text{ln}\sqrt{2\pi\sigma^2}-\frac{1}{2\sigma^2}(x[0]-A)^2\]

    A에 대해 두번 미분해주고 마이너스를 붙여주면

    \[-\frac{\partial ^2 \text{ln}\ p(x[0];A)}{\partial A^2} = \frac{1}{\sigma^2}, \quad \quad \text{var}(\hat{A}) = \sigma^2 = \frac{1}{-\frac{\partial ^2 \text{ln}\ p(x[0];A)}{\partial A^2}}\]

    More appropriate measure is average curvature(곡률, (2차미분 값)), \(-E[\frac{\partial ^2 \text{ln}\ p(x[0];A)}{\partial A^2}]\)

    (In general, the \(2^{\text{nd}}\) derivative will depend on \(x[0] \rightarrow\) the likelihood function is a R.V.)

Theorem: CRLB - Scalar Parameter

  • Let \(p(\mathbf{x}; \theta)\) satisfy the “regularity” condition

    \[E_\mathbf{x}[\frac{\partial\text{ln}\ p(\mathbf{x}; \theta)}{\partial \theta}] = 0\quad \text{for all}\ \theta\]

    Then, the variance of any unbiased estimator \(\hat{\theta}\) must satisfy

    \[\text{var}(\hat{\theta}) \ge \frac{1}{-E_\mathbf{x}[\frac{\partial^2\text{ln}\ p(\mathbf{x}; \theta)}{\partial \theta^2}]} = \frac{1}{E_\mathbf{x}[(\frac{\partial\text{ln}\ p(\mathbf{x}; \theta)}{\partial \theta})^2]} = \frac{1}{I(\theta)}\]

    where the derivative is evaluated at the true value \(\theta\) and the expectation is taken w.r.t. \(p(\mathbf{x};\theta).\)

    여기서 세번째 텀에서 - 가 사라지는 이유는, 두번째 텀에서 - 가 붙는 이유를 생각해보면 된다.

    두번째 텀에서 마이너스가 붙는 이유는 값을 양수로 만들어주기 위함이고, 세번째 텀은 일차 미분의 제곱이므로 자연스럽게 양수이다. 따라서 - 가 사라지게 된다.

    Furthermore, an unbiased estimator may be found that attains the bound for all \(\theta\) if and only if

    \[\frac{\partial\ \text{ln}\ p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta)(g(\mathbf{x})-\theta)\]

    for some functions \(g()\) and \(I\). That estimator, which is the MVUE, is \(\hat{\theta} = g(\mathbf{x})\), and the minimum variance is \(\frac{1}{I(\theta)}\)

    이렇게 표현이 되면 g() 는 MVUE 이다.

  • Fisher Information: 추정 정확도를 측정하는 방법. 우도 함수의 곡률이 크면 추정량의 분산이 작고, 더 정확한 추정을 할 수 있음을 의미

  • 정칙성 조건(Regularity Conditions): CRLB가 성립하기 위한 조건으로, 특정 미분 가능성 조건을 만족해야 한다.

CRLB Proof (Appendix 3A)

\[- E [\frac{\partial^2 \text{ln} p(\mathbf{x}; \theta)}{\partial \theta^2}] = \frac{1}{c(\theta)} = I(\theta)\]

General CRLB for Signals in WGN

Transformation of Parameters

Vector form of the CRLB

General Gaussian Case and Fisher Information


Lec 4.