[Optimal Design] 4. Optimum Design Concepts: Optimality Conditions

Author

고경수

Published

September 11, 2024

Introduction to Optimum Design

4. Optimum Design Concepts: Optimality Conditions


- 이 장의 주요내용:

  • 비제약조건 및 제약조건 최적화 문제에서 국소적 및 전역적 최소(최대) 정의

  • 비제약조건 최적화 문제에 대한 최적성 조건의 기술

  • 제약조건 최적화 문제에 대한 최적성 조건의 기술

  • 비제약조건 및 제약조건 문제에서 주어진 점에 대한 최적성 조건의 검토

  • 후보 최소점을 위한 1차 최적성 조건의 풀이

  • 함수와 설계 최적화 문제의 볼록성 검토

  • 제약조건의 변동에 따른 목적함수의 최적값 변화를 연구하기 위한 라그랑지 승수의 활용


4.1 Global and local minima

  • minimum ← sigular, minima ← plurar

  • Global minimum

    \(f(x^*) \le f(x)\quad \text{for all}\ x\ \text{in the feasible set, }S\)

  • Local minimum

    \(f(x^*) \le f(x)\quad \text{for all}\ x\ \text{in a small neighborhood}\ N\ \text{of}\ x^* \text{in the feasible set, }S\)

    \(N = \{x|x\in S\ \text{with}\ ||x-x^*|| < \delta\}\) where \(\delta\): small real number.

  • Existence of a minimum

    • Weierstrass theorem(필요조건, 만족안해도 미니멈 존재할 수 있음)

      \(f(x)\) is continuous on a non-empty feasible set S that is closed and bounded, then \(f(x)\) has a global minimum is S.

      1. set S is closed \(\Leftrightarrow a\le x \le b\)

      2. set S is bounded \(\Leftrightarrow\) any \(x\in S, x^Tx<c\)

        • c는 상수, \(x\)는 single이면 \(x^2<c\)

      e.g.,

      [0,1] : closed, bounded.

      [2n, 2n+1], \(n \in Z\)(정수) : closed, but not bounded (\(\because n\rightarrow \infty\))

      (0, 1] : not closed, but bounded

      (2n, 2n+1) : not closed, not bounded

\(a\le x \le b\) : closed.

Any \(x \in S, \quad x^Tx < c\) : bounded

→ global minimum exist

4.2 Basic calculus concepts

Vectors

Sets

4.2.1 Gradient vectors (first-order partial derivative of a function)

4.2.2 Hessian matrix (second-order partial derivatives)

  • \(\nabla^2f = \mathbf{H}\)

    \(\mathbf{H} = \mathbf{H}^T\) (always symmetric)

4.2.3 Taylor’s Expansion

  1. single variable \(x\)

    \[f(x)=f(x^*) + \frac{df(x^*)}{dx}(x-x^*) + \frac{1}{2}\frac{d^2f(x^*)}{dx^2}(x-x^*)^2+ \cdots\]

    Let \(x-x^* = d\)

    \[f(x^*+d) = f(x^*) + \frac{df(x^*)}{dx} d + \frac{1}{2}\frac{d^2f(x^*)}{dx^2}d^2 + \cdots\]

  2. Two variables, \(x_1\) and \(x_2\)

    \[f(x_1^* + d_1, x_2^*+d_2) = f(x_1^*, x_2^*) + \frac{df}{dx_1}d_1 + \frac{df}{dx_2}d_2 + \frac{1}{2}\{\frac{\partial^2 f}{\partial x_1^2}d^2 + 2\frac{\partial^2 f}{\partial x_1 \partial x_2}d_1 d_2 + \frac{\partial^2 f}{\partial x_2^2} d_2^2 \} + \cdots\]

    Using summation notations,

    \[= f(x_1^*, x_2^*) + \sum^2_{i=1} \frac{\partial f}{\partial x_i} d_i + \frac{1}{2}\sum^2_{i=1}\sum^2_{i=1} \frac{\partial^2 f}{\partial x_i \partial x_j} d_i d_j + \cdots\]

    Using matrix notation,

    \[f(\bar{x}^* + \bar{d}) = f(\bar{x}^*) + (\bar{\nabla}f)^T\bar{d} + \frac{1}{2} \bar{d}^T \bar{H} \bar{d} + \cdots\]

    Let \(\Delta f = f(\bar{x^*} + \bar{d}) - f(\bar{x^*})\)

    \[\Delta f = (\bar{\nabla}f)^T \bar{d} + \frac{1}{2} \bar{d}^T \bar{H} \bar{d} + \cdots\]

  • \(\bar{x}, \tilde{x} \rightarrow\) 벡터나 매트릭스. multiple variable notation.

4.2.4 Quadratic form (Q-form) and definite matrix

  1. Q-form

    \[f = \sum^n_{i=1} \sum^n_{j=1} p_{xj} x_i x_j = \bar{x}^T \bar{P} \bar{x} \leftarrow \text{(Q-form)}\]

    e.g., \(f = x_1^2 - 6x_1 x_2 + 9 x_2^2\)

    \(= (x_1\ x_2) \begin{bmatrix} 1 & -3\\ -3 & 9 \end{bmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \bar{x}^T \bar{P} \bar{x}\)

  2. Positive definiteness (P-D) of Q-form

    P-D if \(f(x)>0\) for all non-zero \(\tilde{x}\)

    • 아래로 볼록! convex

    P-semi D if \(f(\tilde{x}) \ge 0\) for all \(\tilde{x}\)

    e.g., \(f=\frac{1}{3} x^2\) : P-D

    \(\quad \quad f>0\) for \(x\neq0\)

    \(\quad \quad f=0\) iff \(x=0\)

    • negative는 위로 볼록, minimum 없음.
  • How to check P-D of \(\tilde{x}^T \tilde{P} \tilde{x}\)

    1. check eigenvalues of \(\tilde{P}\)

    2. sylvester’s test