CNN code2
transfer learning, transform
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, models, transforms
import numpy as np
import time
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device 객체
- 데이터 셋 불러오기
# 데이터셋을 불러올 때 사용할 변형(transformation) 객체 정의
transforms_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(), # 데이터 증진(augmentation)
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # 정규화(normalization)
])
transforms_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_dir = './custom_dataset'
train_datasets = datasets.ImageFolder(os.path.join(data_dir, 'train'), transforms_train) # 이미지가 폴더단위일때 사용
test_datasets = datasets.ImageFolder(os.path.join(data_dir, 'test'), transforms_test)
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=4, shuffle=True, num_workers=4) # 배치 수
test_dataloader = torch.utils.data.DataLoader(test_datasets, batch_size=4, shuffle=True, num_workers=4) # 배치 수
print('학습 데이터셋 크기:', len(train_datasets))
print('테스트 데이터셋 크기:', len(test_datasets))
class_names = train_datasets.classes
print('클래스:', class_names)
- 학습할 CNN 딥러닝 모델 객체 초기화
model = models.resnet34(pretrained=True)
num_features = model.fc.in_features
# 전이 학습(transfer learning): 모델의 출력 뉴런 수를 3개로 교체하여 마지막 레이어 다시 학습
model.fc = nn.Linear(num_features, 3)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
- 학습 진행
num_epochs = 50
model.train()
start_time = time.time()
# 전체 반복(epoch) 수 만큼 반복하며
for epoch in range(num_epochs):
running_loss = 0.
running_corrects = 0
# 배치 단위로 학습 데이터 불러오기
for inputs, labels in train_dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
# 모델에 입력(forward)하고 결과 계산
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 역전파를 통해 기울기(gradient) 계산 및 학습 진행
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(train_datasets)
epoch_acc = running_corrects / len(train_datasets) * 100.
# 학습 과정 중에 결과 출력
print('#{} Loss: {:.4f} Acc: {:.4f}% Time: {:.4f}s'.format(epoch, epoch_loss, epoch_acc, time.time() - start_time))
- 학습된 모델 평가
model.eval()
start_time = time.time()
with torch.no_grad():
running_loss = 0.
running_corrects = 0
for inputs, labels in test_dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# 한 배치의 첫 번째 이미지에 대하여 결과 시각화
print(f'[예측 결과: {class_names[preds[0]]}] (실제 정답: {class_names[labels.data[0]]})')
imshow(inputs.cpu().data[0], title='예측 결과: ' + class_names[preds[0]])
epoch_loss = running_loss / len(test_datasets)
epoch_acc = running_corrects / len(test_datasets) * 100.
print('[Test Phase] Loss: {:.4f} Acc: {:.4f}% Time: {:.4f}s'.format(epoch_loss, epoch_acc, time.time() - start_time))